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Abstract. In this paper, we propose a novel multiplanar autoregressive
(AR) model to exploit the correlation in cross-dimensional planes of a
similar patch group collected in an image, which has long been neglected
by previous AR models. On that basis, we then present a joint multipla-
nar AR and low-rank based approach (MARLow) for image completion
from random sampling, which exploits the nonlocal self-similarity within
natural images more effectively. Specifically, the multiplanar AR model
constraints the local stationarity in different cross-sections of the patch
group, while the low-rank minimization captures the intrinsic coherence
of nonlocal patches. The proposed approach can be readily extended
to multichannel images (e.g. color images), by simultaneously consid-
ering the correlation in different channels. Experimental results demon-
strate that the proposed approach significantly outperforms state-of-the-
art methods, even if the pixel missing rate is as high as 90 %.

Keywords: Image completion · Multiplanar autoregressive model ·
Low-rank minimization

1 Introduction

Image restoration aims to recover original images from their low-quality observa-
tions, whose degradations are mostly generated by defects of capturing devices or
error prone channels. It is one of the most important techniques in image/video
processing, and low-level computer vision. In our work, we mainly focus on
an interesting problem: image completion from random sampling, which has
attracted many researchers’ attention [5,10–12,15,22,24,26]. The problem is to
recover the original image from its degraded observation, which has missing
pixels randomly distributed. Such problem is a typical ill-posed problem, and
different kinds of image priors have been employed.

One of the most commonly used image priors is the nonlocal prior [1], also
known as the self-similarity property of natural images. Such prior reflects the
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fact that there are many similar contents frequently repeated in the whole image,
which can be well utilized in image completion. A classic way is to process
the collected similar patch groups. The reason is that similar degraded patches
contain complementary information for each other, which contributes to the
completion. According to the manipulation scheme applied to the patch group,
there are generally two kinds of methods in the literature:

Cube-based methods stack similar patches directly, and then manipulate
the data cube. The well-known denoising method Block-Matching and 3D filter-
ing (BM3D) algorithm [6] is one of the most representative cube-based methods,
which performs a 1D transform on each dimension of the data cube. The idea has
been widely studied, and many extensions have been presented [16,24]. These
methods perform a global optimization on the data cube, neglecting the local
structures inside the cube. Also, they process the data cube along each dimen-
sion, failing to consider the correlation that exists in cross-dimensional planes
of the data cube. In this paper, we propose a multiplanar autoregressive (AR)
model to address these problems. Specifically, the multiplanar AR model is to
constrain the local stationarity in different sections of the data cube. Nonethe-
less, the multiplanar AR model is not good at smoothing the intrinsic structure
of similar patches.

Matrix-based methods stretch similar patches into vectors, which are
spliced to form a data matrix. Two popular approaches, sparse coding and
low-rank minimization, can be applied to such matrices. For sparse coding, the
sparse coefficients of each vector in the matrix should be similar. This amounts
to restricting the number of nonzero rows of the sparse coefficient matrix [17,28].
Zhang et al. [23] presented a group-based sparse representation method, which
regards similar patch groups as its basic units. For low-rank minimization, since
the data matrix is constructed by similar vectors, the rank of its underlying clean
matrix to be recovered should be low. By minimizing the rank of the matrix,
inessential contents (e.g. the noise) of the matrix can be eliminated [7,12]. How-
ever, in image completion from random samples, such methods may excessively
smooth the result, since they only consider the correlation of pixels at the same
location of different patches. Also, unlike stacking similar patches directly, repre-
senting image patches by vectors shatters the local information stored in image
patches.

Upon these analyses, these two kinds of methods seem to be relatively com-
plemented. Thus, motivated by combining the merits of cube-based and matrix-
based methods, we present a joint multiplanar autoregressive and low-rank app-
roach (MARLow) for image completion (Fig. 1). Instead of performing a global
optimization on the data cube grouped by similar patches, we propose the con-
cept of the multiplanar autoregressive model to exploit the local stationarity
on different cross-sections of the data cube. Meanwhile, we jointly consider the
matrix grouped by stretched similar patches, in which the intrinsic content of
similar patches can be well recovered by low-rank minimization. In summary,
our contributions lie in three aspects:
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Fig. 1. The framework of the proposed image completion method MARLow. After
obtaining an initialization of the input image, similar patches are collected. Then, the
joint multiplanar autoregressive and low-rank approach is applied on grouped patches.
After all patches are processed, overlapped patches are aggregated into a new interme-
diate image, which can be used as the input for the next iteration.

– We propose the concept of multiplanar autoregressive model, to characterize
the local stationarity of cross-dimensional planes in the patch group.

– We present a joint multiplanar autoregressive and low-rank approach (MAR-
Low) for image completion from random sampling, along with an efficient
alternating optimization method.

– We extend our method to multichannel images by simultaneously considering
the correlation in different channels, presenting encouraging performance.

2 Related Work

In this section, we briefly review and discuss the existing literature that closely
relates to the proposed method, including approaches associated with the autore-
gressive model and low-rank minimization.

Autoregressive model. The autoregressive (AR) model has been extensively
studied in the last decades. AR model refers to modeling a pixel as the linear
combination of its supporting pixels, usually its known neighboring pixels. Based
on the assumption that natural images have the property of local stationarity,
pixels in a local area share the same AR parameters, i.e. the weight for each
neighbor. AR parameters are often estimated from the low-resolution image
[14,25]. Dong et al. proposed a nonlocal AR model [8] using nonlocal pixels as
supporting pixels, which is taken as a data fidelity constraint. The 3DAR model
has been proposed to detect and interpolate the missing data in video sequences
[9,13]. Since video sequences have the property of temporal smoothness, AR
model can be extended to temporal space by combining the local statistics in the
single frame. Different from approaches mentioned above, we focus on different
cross-sections of the data cube grouped by similar nonlocal patches in a single
image and constrain the local stationarity inside different planes in the data cube
simultaneously (Fig. 2).
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Low-Rank minimization. As a commonly used tool in image completion, low-
rank minimization aims to minimize the rank of an input corrupted matrix. It can
be used for recovering/completing the intrinsic content of a degraded potentially
low-rank matrix. The original low-rank minimization problem is NP-hard, and
cannot be solved efficiently. Candès and Recht [3] proposed to relax the problem
by using nuclear norm of the matrix, i.e. the sum of singular values, which has
been widely used in low-rank minimization problems since then. As proposed
in [7,12], similar patches in images/videos are collected to form a potentially
low-rank matrix. Then, the nuclear norm of the matrix is minimized. Zhang
et al. further presented the truncated nuclear norm [22], minimizing the sum of
small singular values. Ono et al. [18] proposed the block nuclear norm, leading
to a suitable characterization of the texture component. Low-rank minimization
can also be used on tensor completion. Liu et al. [15] regarded the whole input
degraded color image as a potentially low-rank tensor, and defined the trace norm
of tensors by extending the nuclear norm of matrices. However, most general
natural images are not potentially low-rank. Thus, Chen et al. [4] attempted to
recover the tensor while simultaneously capturing the underlying structure of it.
In our work, we apply the nuclear norm of matrices, and we use singular value
thresholding (SVT) method [2] to solve the low-rank minimization problem.
Jointly combined with our multiplanar model (as elaborated in Sect. 3), our
method produces encouraging image completion results.

3 The Proposed Image Completion Method

As discussed in previous sections, cube-based methods and matrix-based meth-
ods have their drawbacks, and they complement each other in some sense. In
this section, we introduce the proposed multiplanar AR model to utilize informa-
tion from cross-sections of the data cube grouped by similar patches. Moreover,
combined with low-rank minimization, we present the joint multiplanar autore-
gressive and low-rank approach (MARLow) for image completion. At the end
of this section, we extend the proposed method to multichannel images. For an
input degraded image, we first conduct a simple interpolation-based initialization
on it (see Fig. 1), to provide enough information for patch grouping.

3.1 Multiplanar AR Model

Considering a reference patch of size n×n, we collect its similar nonlocal patches.
For a data cube grouped by similar patches, we observe its different cross-sections
(cross-dimensional planes). As shown in Fig. 2(a), different cross-sections of the
data cube possess local stationarity. Since AR models can measure the local
stationarity of image signals, we naturally extend the conventional AR model to
the multiplanar AR model to measure cross-dimensional planes.

Generally, the conventional AR model is defined as

X(i, j) =
∑

(m,n)∈N
X(i + m, j + n) · ϕ(m,n) + σ(i, j), (1)
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(a) Cross-sections of a data cube (b) A multiplanar AR model

Fig. 2. (a) Different cross-sections of a data cube grouped by similar patches also
possess local stationarity, which can be well processed by AR models. (b) White dots
represent pixels (i.e. small rectangles in 6 × 6 image patches). Black arrows connect
the center pixel of a multiplanar AR model with its supporting pixels.

where X(i, j) represents the pixel located at (i, j). X(i + m, j + n) is the sup-
porting pixel with spatial offset (m,n), while ϕ(m,n) is the corresponding AR
parameter. N is the set of supporting pixels’ offsets and σ(i, j) is the noise.

In our work, the multiplanar AR model consists supporting pixels from differ-
ent cross-dimensional planes (as illustrated in Fig. 2(b)). For a data cube grouped
by similar patches of an image patch located at i, the multiplanar AR model of
pixel Xi(j, k, l) with offset (j, k, l) in the data cube is defined as

Xi(j, k, l) =
∑

m∈N1

∑

(p, q)
∈ N2

Yi(j + m, k + p, l + q) · ϕi(m, p, q) + σi(j, k, l), (2)

where N1 represents the set of supporting pixels’ planar offsets and N2 represents
the set of supporting pixels’ spatial offsets (assuming the order of the multiplanar
AR model Norder = |N1| × |N2|). Yi(j + m, k + p, l + q) is the supporting pixel
with offset (m, p, q) in the data cube and ϕi(m, p, q) is the corresponding AR
parameter. σi(j, k, l) is the noise. Y is the initialization of the input image X.
The reason we use Y here is that it is difficult to find enough known pixels to
support the multiplanar AR model under high pixel missing rate.

For an n × n patch, assuming N patches are collected, the aforementioned
multiplanar AR model can be transformed into a matrix form, that is,

Xi = Ti(Y ) · ϕi + σi, (3)

where Xi ∈ R
(n2×N)×1 is a vector containing all modeled pixels. Ti(·) rep-

resents the operation that extract supporting pixels for Xi. Each row of
Ti(Y ) ∈ R

(n2×N)×Norder contains values of supporting pixels of each pixel and
ϕi ∈ R

Norder×1 is the multiplanar AR parameter vector.
Thus, the optimization problem for Xi and ϕi can be formulated as follows,

argmin
Xi,ϕi

‖Xi − Ti(Y ) · ϕi‖2F . (4)

where ‖ · ‖F is the Frobenius norm. In order to enhance the stability of
the solution, we introduce the Tikhonov regularization to solve this problem.
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Specifically, a regularization term is included in the minimization problem, form-
ing the following regularized least-square problem

argmin
Xi,ϕi

‖Xi − Ti(Y ) · ϕi‖2F + ‖Γ · ϕi‖2F , (5)

where Γ = αI and I is an identity matrix.

3.2 MARLow

Since the multiplanar AR model is designed to constrain a pixel with its sup-
porting pixels on different cross-sections of the patch group, it can deal more
efficiently with local image structures. For instance, assume there is an edge
on an image that is severely degraded, with only a few pixels on it. After col-
lecting similar patches, low-rank minimization or other matrix-based methods
may regard the remaining pixels as noises and remove them. However, with the
multiplanar AR model, these pixels can be used to constrain each other and
strengthen the underlying edge. Nevertheless, AR models are not suitable for
smoothing the intrinsic structure, while low-rank minimization methods special-
ize in it. So we propose to combine the multiplanar AR model with low-rank
minimization (MARLow) as follows,

argmin
Xi,ϕi

‖Xi − Ti(Y ) · ϕi‖2F + ‖Γ · ϕi‖2F

+ μ
(
‖Ri(X) − Ri(Y )‖2F + ‖Ri(X)‖∗

)
,

(6)

where the last part is the low-rank minimization term restricting the fidelity
while minimizing the nuclear norm (i.e. ‖ · ‖∗) of the data matrix. Ri(·) is an
extraction operation that extracts similar patches of the patch located at i.
Ri(X) = [Xi1 ,Xi2 , ...,XiN ] ∈ R

n2×N is similar patch group of the reference
patch Xi1 , and Ri(Y ) = [Yi1 , Yi2 , ..., YiN ] ∈ R

n2×N represents the corresponding
patch group extracted from Y .

Figure 3 presents the completion results by using only low-rank without the
multiplanar AR model, and by MARLow. From the figure, we can see that
MARLow can effectively connect fractured edges.

3.3 Multichannel Image Completion

For multichannel images, instead of applying the straightforward idea, that is,
the separate procedure (i.e. processing different channels separately and combin-
ing the results afterward), we present an alternative scheme to simultaneously
process different channels. At first, we collect similar patches of size n × n × h
(where h represents the number of channels) in a multichannel image. After that,
each patch group is processed by simultaneously considers all channels. Specif-
ically, the collected patches can be formed into h data cubes by stacking slices
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(a) Low-rank (b) MARLow

Fig. 3. (a) Completion result by low-rank without our multiplanar AR model (19.48
dB/0.8933); (b) Completion result generated by MARLow (19.95 dB/0.8980).
Clearly, the result obtained by MARLow has higher visual quality, which can be
observed in marked regions.

(of size n × n × 1) in the corresponding channel of different patches. For multi-
planar AR model, the minimization problem in Eq. (5) turns into

argmin
Xk

i ,ϕk
i

∑

1≤k≤h

(∥∥Xk
i − T k

i (Y ) · ϕk
i

∥∥2

F
+

∥∥Γ · ϕk
i

∥∥2

F

)
(7)

For low-rank minimization, N collected patches are formed into a potentially
low-rank data matrix of size (n2×h)×N by representing each patch as a vector.

Taking an RGB image for an example, in patch grouping, we search for
similar patches using reference patches with the size n×n×3. The multichannel
image completion problem can be solved by minimizing

argmin
XC

i ,ϕC
i

∥∥XC
i − TC

i (Y C) · ϕC
i

∥∥2

F
+

∥∥Γ · ϕC
i

∥∥2

F

+ μ
(∥∥RC

i (XC) − RC
i (Y C)

∥∥2

F
+

∥∥RC
i (XC)

∥∥
∗
)

,

(8)

where

XC
i =

⎡

⎣
XR

i

XG
i

XB
i

⎤

⎦ ∈ R
(n2×N×3)×1,

ϕC
i =

⎡

⎣
ϕR

i

ϕG
i

ϕB
i

⎤

⎦ ∈ R
(Norder×3)×1,

TC
i (Y C) =

⎡

⎣
Ti(Y R) 0 0

0 Ti(Y G) 0
0 0 Ti(Y B)

⎤

⎦ ∈ R
(n2×N×3)×(Norder×3),

RC
i (XC) =

⎡

⎣
XR

i1
XR

i2
· · · XR

iN
XG

i1
XG

i2
· · · XG

iN
XB

i1
XB

i2
· · · XB

iN

⎤

⎦ ∈ R
(n2×3)×N ,

RC
i (Y C) =

⎡

⎣
Y R

i1
Y R

i2
· · · Y R

iN
Y G

i1
Y G

i2
· · · Y G

iN
Y B

i1
Y B

i2
· · · Y B

iN

⎤

⎦ ∈ R
(n2×3)×N .
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(a) 25.77 dB (b) 30.36 dB (c) 26.66 dB (d) 34.38 dB

Fig. 4. (a) and (c) are obtained by the separate procedure. (b) and (d) are obtained
by our multichannel image completion method.

The notations are given similarly as the preceding definitions. By utilizing
the information in multichannel images, the patch grouping can be more pre-
cise. Furthermore, rich information in different channels can compensate for
each other and constrain the completion result. Figure 4 illustrates the differ-
ence between processing different channels separately and simultaneously (with
80 % pixels missing). Compared with the separate procedure, the multichannel
image completion approach can significantly improve the performance of our
method. Thus, in Sect. 5, for those methods dedicated to gray-scale image com-
pletion, we do not apply the separate procedure to them to obtain color image
completion results since it may be unfair. Instead, we compare our multichan-
nel image completion method with other state-of-the-art color image completion
methods.

4 Optimization

In this section, we present an alternating minimization algorithm to solve the
minimization problems in Eqs. (6) and (8). Take Eq. (6) for an example. We
address each of the variable Xi and ϕi separately and present an efficient opti-
mization algorithm.

When fixing Xi, the problem turns into

argmin
ϕi

‖Xi − Ti(Y ) · ϕi‖2F + ‖Γ · ϕi‖2F , (9)

which is a standard regularized linear least square problem, and can be solved
by ridge regression. The closed-form solution is given by

ϕi =
(
Ŷ T Ŷ + ΓT Γ

)−1

Ŷ Xi, (10)

where Ŷ = Ti(Y ).
With ϕi fixed, the problem for updating Xi becomes

argmin
Xi

‖Xi − Ti(Y ) · ϕi‖2F

+ μ
(
‖Ri(X) − Ri(Y )‖2F + ‖Ri(X)‖∗

)
.

(11)
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Here we notice that Xi and Ri(X) contain the same elements. Their only
difference is the formation: Xi is a vector and Ri(X) is a matrix. Since we use
Frobenius norm here, the value of the norm does not change if we reform the
vector into a matrix form. So we reform Xi into a matrix Mi corresponding
to Ri(X) (in this way, Ri(X) does not need to be reformed, and it can be
represented by Mi directly). The vector Ti(Y ) ·ϕi is also reformed into a matrix
form, represented by Y1i . By denoting Y2i = Ri(Y ), we can get the simplified
version of Eq. (11):

argmin
Mi

‖Mi − Y1i‖2F + μ
(
‖Mi − Y2i‖2F + ‖Mi‖∗

)
. (12)

It is a modified low-rank minimization problem and can be transformed into
the following formation

argmin
Mi

‖Mi − Y ′
i ‖2F + λ‖Mi‖∗, (13)

where Y ′
i = (1 − λ)Y1i + λY2i and λ = μ/(μ + 1). The problem now turns into a

standard low-rank minimization problem [2]. Its closed-form solution is given as

Mi = Sτ (Y ′
i ), (14)

where Sτ (·) represents the soft shrinkage process.
With the input random sampled image Y and the mask matrix Mmask indi-

cating known pixels (0s for missing pixels and 1s for known pixels), our alter-
nating minimization algorithm for image completion from random sampling can
be summarized in Algorithm 1.

Algorithm 1. A Joint Multiplanar Autoregressive and Low-Rank Approach for
Image Completion

Input: Y and Mmask.
X0 = Bilinear(Y, Mmask).
for i = 1 to maxIter do

Patch grouping.
for each image patch group Xk in X(i−1) do

Estimate ϕk according to Eq. (9).
Estimate Xk according to Eq. (11).

end for
Estimate X(i) by aggregating all overlapped patches.
X(i)(Mmask) = Y (Mmask).
Y = X(i).

end for
Output: The restored image X(i).
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5 Experimental Results

Experimental results of compared methods are all generated by the original
authors’ codes, with the parameters manually optimized. Both objective and
subjective comparisons are provided for a comprehensive evaluation of our work.
Peak Signal to Noise Ratio (PSNR) and structural similarity (SSIM) index are
used to evaluate the objective image quality. In our implementation, if not spe-
cially stated, the size of each image patch is set to 8×8 (5×5×3 in color images)
with four-pixel (one-pixel in color images) overlap. The number of similar patches
is set to N = 64 for gray-scale image and N = 75 for color image. Other para-
meters in our algorithm are empirically set to α =

√
10, μ = 10. Please see the

electronic version for better visualization of the subjective comparisons. More
results can be found in the supplementary materials.

5.1 Gray-Scale Image Completion

For gray-scale images, we compare our method with state-of-the-art gray-scale
image completion methods BPFA [28], BNN [18], ISDSB [10], and JSM [24].
Table 1 shows PSNR/SSIM results of different methods on test images with 80 %
pixels missing. From Table 1, the proposed method achieves the highest PSNR
and SSIM in all cases, which fully demonstrates the effectiveness of our method.
Specifically, the improvement on PSNR is 1.06 dB and that on SSIM is 0.0148
on average compared with the second best algorithm (i.e. JSM).

Table 1. PSNR (dB) and SSIM results of gray-scale image completion from different
methods under 80 % missing rate. The best result in each case is highlighted in bold

Image Bicubic ISDSB BNN BPFA JSM Proposed

House 28.96/0.8422 25.61/0.8052 27.76/0.8381 30.19/0.8717 33.00/0.8944 34.70/0.9070

Lena 29.80/0.8650 27.31/0.8142 28.58/0.8416 30.95/0.8794 31.49/0.8836 32.84/0.9043

Cameraman 23.13/0.7998 21.72/0.7584 22.65/0.7867 24.04/0.8082 25.18/0.8439 25.49/0.8581

Pepper 29.63/0.8386 27.06/0.8205 27.87/0.8389 29.85/0.8529 31.75/0.8664 32.59/0.8781

Average 27.88/0.8364 25.42/0.7996 26.72/0.8263 28.76/0.8530 30.35/0.8721 31.41/0.8869

Figure 5 compares the visual quality of completion results for test images
(with 80 % pixels missing). From Fig. 5, ISDSB and BNN successfully recover
the boundaries of the image, but fail to restore rich details. BPFA performs
better completion on image details. Nonetheless, there are plenty of noises along
edges recovered by BPFA. At the first glance, the completion results of JSM
and our method are both of high quality. However, if we get a closer look, it can
be observed that there are isolated noises on image details (such as structures
on Lena’s hair and her hat) in the result generated by JSM. JSM also cannot
recover tiny structures. Our method presents the best visual quality, especially
on image details and edges.
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(a) Degraded (b) ISDSB (c) BNN (d) BPFA (e) JSM (f) MARLow (g) Original

Fig. 5. Comparison of completion results of different methods with 80 % pixels missing.
From left to right: the degraded image, results of ISDSB, BNN, BPFA, JSM, our
method, and the ground truth. The second and third rows show the corresponding
close-ups.

5.2 Color Image Completion

We compare our method with state-of-the-art color image completion methods
FoE [19], BPFA [28], GSR [23] and ST-NLTV [5]. Table 2 lists PSNR/SSIM
results of different methods on color images with 80 % and 90 % pixels missing. It
is clear that the proposed method achieves the highest PSNR/SSIM in all cases.
Compared with gray-scale images, our image completion method performs even
better on color images judging from the average PSNR and SSIM. The proposed
method outperforms the second best method (i.e. BPFA) by 2.78 dB on PSNR
and 0.0288 on SSIM. Note that, when tested on image Woman with 90 % pixels
missing, the PSNR and SSIM improvements achieved by our method over BPFA
are 5.92 dB and 0.0539, respectively.

Table 2. PSNR (dB) and SSIM results of color image completion under 80 % and 90 %
missing rates. The best result in each case is highlighted in bold

Image Ratio Bicubic FoE ST-NLTV GSR BPFA Proposed

Castle 80% 24.32/0.8070 25.71/0.8424 26.60/0.8414 25.66/0.8588 29.22/0.9099 30.36/0.9124

90% 22.66/0.7389 23.38/0.7655 23.39/0.7507 22.99/0.7771 25.09/0.8189 26.55/0.8509

Woman 80% 19.36/0.7668 19.83/0.7948 21.37/0.7992 31.71/0.9460 30.33/0.9363 34.38/0.9561

90% 17.25/0.6453 17.16/0.6520 16.79/0.5973 20.02/0.8016 24.20/0.8640 30.12/0.9179

Soldier 80% 21.61/0.7512 23.95/0.8434 25.10/0.8320 25.54/0.8963 28.92/0.9352 30.78/0.9473

90% 19.58/0.6336 21.03/0.7237 20.44/0.6911 21.82/0.7922 24.09/0.8368 26.34/0.8893

Average 20.80/0.7238 21.84/0.7703 22.28/0.7520 24.62/0.8453 26.98/0.8835 29.76/0.9123

Figure 6 shows the visual quality of color image completion results for test
images (with 90 % pixels missing). Apparently, all the comparing methods are
doing great on flat regions. However, FoE and ST-NLTV cannot restore fine
details. GSR is better on recovering details, but it generates noticeable artifacts
around edges and fails to connect fractured edges. BPFA produces sharper edges,
but its performance under higher missing rate is not satisfying. The result of our
method is of the best visual quality, especially under higher missing rate.
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(a) Degraded (b) FoE (c) ST-NLTV (d) GSR (e) BPFA (f) MARLow (g) Original

Fig. 6. Comparison of color image completion results of different methods with 90 %
pixels missing. From left to right: the degraded image, results of FoE, ST-NLTV, GSR,
BPFA and our method, the ground truth.

We also compare our method with state-of-the-art low-rank matrix/tensor
completion based methods TNNR [22], LRTC [15] and STDC [4]. Since these
methods regard the whole image as a potentially low-rank matrix, the input
image should have strong correlations between its columns or rows. Thus, to
be fair, we also test this kind of images to evaluate the performance of our
method. From Fig. 7, TNNR and LRTC tends to erase tiny objects of the image,
such as the colorful items (see the close-ups in Fig. 7). STDC imports noticeable
noises into the whole image. The proposed method presents not only accurate
completion on sharp edges, but also high-quality textures, exhibiting the best
visual quality.

(a) Degraded (b) TNNR (c) LRTC (d) STDC (e) MARLow (f) Original

Fig. 7. Visual quality comparison of low-rank based methods. (a) The degraded image
(with 90 % pixels missing, 6.12 dB/0.0292); (b) – (e) Completion results by TNNR
(17.58 dB/0.7276), LRTC (19.78 dB/0.8226), STDC (17.65 dB/0.7839), and the pro-
posed method (21.71 dB/0.9021). (f) The ground truth image.
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5.3 Text Removal

Text removal is one of the classic case of image restoration. The purpose of text
removal is to recover the original image from a degraded version by removing the
text mask. We have compared our method with four state-of-the-art algorithms:
KR [21], FoE [20], JSM [24] and BPFA [28]. Our experimental settings of text
removal are the same with those in color image restoration. Table 3 shows the
PSNR and SSIM results of different methods. Figure 8 presents visual comparison
of different approaches, which further illustrates the effectiveness of our method.

5.4 Image Interpolation

The proposed method can also be applied on basic image processing problems,
such as image interpolation. In fact, image interpolation can be regarded as a
special circumstance of image restoration from random samples. To be more
specific, locations of the known/missing pixels in image interpolation are fixed.
Since our method is designed to deal with image restoration from random sam-
ples, we do not utilize this feature in our current implementation. Even so, we
evaluate the performance of the proposed method with respect to image interpo-
lation by comparing with other state-of-the-art interpolation methods. The com-
pared methods including AR model based interpolation algorithms NEDI [14]
and SAI [25], and a directional cubic convolution interpolation DCC [27]. Objec-
tive results are given in Table 4 and subjective comparisons are demonstrated in
Fig. 9, showing that proposed method is competitive with other methods.

Table 3. PSNR (dB) and SSIM results of text removal from different methods. The
best result in each case is highlighted in bold

Image KR FoE BPFA JSM Proposed

Barbara 29.59/0.9578 30.18/0.9585 32.91/0.9647 36.56/0.9839 37.81/0.9862

Parthenon 29.69/0.9374 31.87/0.9535 31.90/0.9506 33.07/0.9631 33.27/0.9656

Butterfly 30.22/0.9717 30.04/0.9713 30.07/0.9595 31.85/0.9797 33.18/0.9844

Foreman 40.51/0.9848 38.81/0.9863 38.53/0.9733 39.70/0.9870 43.30/0.9887

Average 32.50/0.9629 32.73/0.9674 33.35/0.9620 35.30/0.9784 36.89/0.9812

(a) Degraded (b) FoE (c) BPFA (d) JSM (e) MARLow (f) Original

Fig. 8. Visual quality comparison of text removal for image Barbara and Parthenon.
(a) The degraded image with text mask; (b) – (e) Restoration results by FoE, BPFA,
JSM, and the proposed method. (f) The ground truth image.
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Table 4. PSNR (dB) and SSIM results of interpolation from different methods. The
best result in each case is highlighted in bold

Images Bicubic NEDI SAI DCC Proposed

Cameraman 25.37/0.8629 25.42/0.8626 25.88/0.8709 25.92/0.8731 25.36/0.8664

Lena 33.94/0.9149 33.78/0.9142 34.71/0.9193 34.50/0.9197 34.90/0.9225

Lighthouse 26.93/0.8436 26.37/0.8386 26.65/0.8445 27.19/0.8483 27.22/0.8462

Monarch 31.86/0.9561 31.78/0.9555 33.02/0.9623 32.92/0.9623 33.16/0.9640

Average 29.52/0.8944 29.33/0.8927 30.07/0.8992 30.13/0.9009 30.16/0.8998

(a) Bicubic (b) NEDI (c) SAI (d) DCC (e) MARLow (f) Original

Fig. 9. Subjective comparison of interpolation for image Lena. Results of (a) Bicubic,
(b) NEDI, (c) SAI, (d) DCC, (e) the proposed method, and (e) the ground truth image.

6 Conclusion

In this work, we introduce the new concept of the multiplanar model, which
exploits the cross-dimensional correlation in similar patches collected in a single
image. Moreover, a joint multiplanar autoregressive and low-rank approach for
image completion from random sampling is presented, along with an alternat-
ing optimization algorithm. Our image completion method can be extended to
multichannel images by utilizing the correlation in different channels. Extensive
experiments on different applications have demonstrated the effectiveness of our
method. Future works include the extensions on more other applications, such
as video completion and hyperspectral imaging. We are also interested in adap-
tively choosing the size of the processing image patch since it might improve the
completion result.
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